ИнформацияКаталог товаров |
Что за технология Lte Mimo? За счет чего увеличивается скорость в 10 раз?Мобильная передача данных LTE относится к поколению 4G. С помощью неё повышается скорость примерно в 10 раз и эффективность передачи данных, по сравнению с 3G сетью. Однако, не редко бывает, что скорость приема и передачи, даже нового поколения, оставляет желать лучшего. Это напрямую зависит от качества сигнала, который поступает от базовой станции. Для решения данной проблемы используют внешние антенны.
По своей конструкции, LTE антенны могут быть: обычные и MIMO (двойные). При помощи обычной системы можно добиться скорости до 50 Мбит/сек. MIMO же, может увеличить эту скорость в два раза. Это осуществляется за счёт установки в одной системе (коробе) двух антенн, расположенных на небольшом расстоянии друг от друга. Они одновременно принимают и передают сигнал через два отдельных кабеля к приемнику. За счёт этого происходит такое увеличение скорости.
MIMO (Multiple Input Multiple Output – множественный вход множественный выход) – это технология, используемая в беспроводных системах связи (WIFI, WI-MAX, сотовые сети связи), позволяющая значительно улучшить спектральную эффективность системы, максимальную скорость передачи данных и емкость сети. Главным способом достижения указанных выше преимуществ является передача данных от источника к получателю через несколько радио соединений, откуда данная технология и получила свое название.
Особенности распространения радиоволн
Волны, излучаемые различными системами беспроводной радиосвязи в диапазоне свыше 100 МГц, во многом ведут себя как световые лучи. Когда радиоволны при распространении встречают какую-либо поверхность, то в зависимости от материала и размера препятствия часть энергии поглощается, часть проходит насквозь, а оставшаяся – отражается. Причем отраженная и прошедшая насквозь энергии сигнала могут изменить направление своего дальнейшего распространения, а сам сигнал разбивается на несколько волн. Каждая из дошедших до приемника волн образует так называемый путь распространения сигнала. Причем из-за того, что разные волны отражаются от разного числа препятствий и проходят разное расстояние, различные пути имеют разные временные задержки. Распределение энергии сигнала при взаимодействии с препятствием
В условиях плотной городской постройки, из-за большого числа препятствий, таких как здания, деревья, автомобили и др., очень часто возникает ситуация когда между абонентским оборудованием (MS) и антеннами базовой станции (BTS) отсутствует прямая видимость. В этом случае, единственным вариантом достижения сигнала приемника являются отраженные волны. Однако, как отмечалось выше, многократно отраженный сигнал уже не обладает исходной энергией и может прийти с запозданием. Особую сложность также создает тот факт, что объекты не всегда остаются неподвижными и обстановка может значительно измениться с течением времени. В связи с этим возникает проблема многолучевого распространения сигнала – одна из наиболее существенных проблем в беспроводных системах связи.
Для борьбы с многолучевым распространением сигналов применяется Receive Diversity – разнесенный прием. Суть его заключается в том, что для приема сигнала используется не одна, а обычно две антенны, расположенные на расстоянии друг от друга. Таким образом, получатель имеет не одну, а сразу две копии переданного сигнала, пришедшего различными путями. Это дает возможность собрать больше энергии исходного сигнала, т.к. волны, принятые одной антенной, могут не быть принятыми другой и наоборот. Эту схему организации радио интерфейса можно назвать Single Input Multiple Output (SIMO). Также может быть применен обратный подход: когда используется несколько антенн на передачу и одна на прием, эта схема называется Multiple Input Single Output (MISO).
В результате мы приходим к схеме Multiple Input Multiple Output (MIMO). В этом случае устанавливаются несколько антенн на передачу и прием. Однако в отличие от указанных выше схем эта схема разнесения позволяет не только бороться с многолучевым распространением сигнала, но и за счет использования нескольких антенн на передаче и приеме каждой паре передающей/приемной антенне можно сопоставить отдельный тракт для передачи информации. В результате, теоретически, можно увеличить скорость передачи данных во столько раз, сколько дополнительных антенн будет использоваться.
Принцип работы MIMO
Как уже отмечалось выше, для организации технологии MIMO необходима установка нескольких антенн на передающей и на приемной стороне. Обычно устанавливается равное число антенн на входе и выходе системы, т.к. в этом случае достигается максимальная скорость передачи данных. Чтобы показать число антенн на приеме и передаче вместе с названием технологии «MIMO» обычно упоминается обозначение «AxB», где A – число антенн на входе системы, а B – на выходе.
Для работы технологии MIMO необходимы некоторые изменения в структуре передатчика по сравнению с обычными системами. В первую очередь, на передающей стороне необходим делитель потоков, который будет разделять данные, предназначенные для передачи на несколько низкоскоростных подпотоков, число которых зависит от числа антенн. Например, для MIMO 2х2 и скорости поступления входных данных 100 Мбит/сек делитель будет создавать 2 потока по 50 Мбит/сек каждый. Далее каждый их данных потоков должен быть передан через свою антенну. В одном из возможных способов организации технологии MIMO сигнал передается от каждой антенны с различной поляризацией, что позволяет идентифицировать его при приеме.
На приемной стороне несколько антенн принимают сигнал из радиоэфира. Причем антенны на приемной стороне также устанавливаются с некоторым пространственным разнесением, за счет чего обеспечивается разнесенный прием. Принятые сигналы поступают на приемники, число которых соответствует числу антенн и трактов передачи. Причем на каждый из приемников поступают сигналы от всех антенн системы. Каждый из таких сумматоров выделяет из общего потока энергию сигнала только того тракта, за который он отвечает. В зависимости от принципа работы системы, передаваемый сигнал может повторяться через определенное время, либо передаваться с небольшой задержкой через другие антенны.
Рассмотренный выше принцип организации радиосвязи относится к так называемой Single user MIMO (SU-MIMO), где существует лишь один передатчик и приемник информации. В этом случае и передатчик и приемник могут четко согласовать только свои действия. Такая схема подходит, например для организации связи в доме офисе между двумя устройствами. В свою очередь большинство систем, такие как WI-FI, WIMAX, сотовые системы связи являются многопользовательскими, т.е. в них существует единый центр и несколько удаленных объектов, с каждым из которых необходимо организовать радиосоединение. В этом случае, решают две проблемы: с одной стороны базовая станция передает сигнал ко многим абонентам через одну и ту же антенную систему (MIMO broadcast), и в то же время принимает сигнал через те же антенны от нескольких абонентов (MIMO MAC – Multiple Access Channels).
Принцип организации технологии MIMO
Применение MIMO
Технология MIMO в последнее десятилетие является одним из самых актуальных способов увеличения пропускной способности и емкости беспроводных систем связи. Рассмотрим некоторые примеры использования MIMO в различных системах связи.
Стандарт WiFi 802.11n – один из наиболее ярких примеров использования технологии MIMO. Согласно ему он позволяет поддерживать скорость до 300 Мбит/сек. Причем предыдущий стандарт 802.11g позволял предоставлять лишь 50 Мбит/сек. Кроме увеличения скорости передачи данных, новый стандарт благодаря MIMO также позволяет обеспечить лучшие характеристики качества обслуживания в местах с низким уровнем сигнала.
Стандарт WiMAX также имеет два релиза, которые раскрывают новые возможности перед пользователями с помощью технологии MIMO. Первый – 802.16e – предоставляет услуги мобильного широкополосного доступа. Он позволяет передавать информацию со скоростью до 40 Мбит/сек в направлении от базовой станции к абонентскому оборудованию. Однако MIMO в 802.16e рассматривается как опция и используется в простейшей конфигурации – 2х2. В следующем релизе 802.16m MIMO рассматривается как обязательная технология, с возможной конфигурацией 4х4. В данном случае WiMAX уже можно отнести к сотовым системам связи, а именно четвертому их поколению (за счет высокой скорости передачи данных). В случае мобильного использования, теоретически, может быть достигнута скорость 100 Мбит/сек. В фиксированном исполнении скорость может достигать 1 Гбит/сек.
Наибольший интерес представляет использование технологии MIMO в системах сотовой связи. Данная технология находит свое применение, начиная с третьего поколения систем сотовой связи. Например, в стандарте UMTS, в Rel. 6 она используется совместно с технологией HSPA с поддержкой скоростей до 20 Мбит/сек, а в Rel. 7 – с HSPA+, где скорости передачи данных достигают 40 Мбит/сек. Однако в системах 3G MIMO так и не нашла широкого применения.
Системы 4G, а именно LTE, также предусматривают использование MIMO в конфигурации до 8х8. Это в теории может дать возможность передавать данные от базовой станции к абоненту свыше 300 Мбит/сек. Также важным положительным моментом является устойчивое качество соединения даже на краю соты. При этом даже на значительном удалении от базовой станции, или при нахождении в глухом помещении будет наблюдаться лишь незначительное снижение скорости передачи данных.
Таким образом, технология MIMO находит применение практически во всех системах беспроводной передачи данных. Причем потенциал ее не исчерпан. Уже сейчас разрабатываются новые варианты конфигурации антенн, вплоть до 64х64 MIMO. Это в будущем позволит добиться еще больших скоростей передачи данных, емкости сети и спектральной эффективности. |